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Abstract. Object recognition in general is still a challenging task to-
day. Problems arise for example from parallel segmentation and local-
ization or the problem to detect objects invariant of position, scale and
rotation. Humans can solve all these problems easily and thus neuro-
computational and psychological data could be used to develop similar
algorithms. In our model, attention reinforces the relevant features of the
object allowing to detect it in parallel. Human vision also uses stereo-
scopic views to extract depth of a scene. Here, we will demonstrate the
concept of attention for object recognition for stereo vision in a virtual
reality, which could be applied in the future to practical use in robots.
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1 Introduction

Object recognition is the task to recognize and additionally localize a searched
object in an image or a scene. Many neuro-computational models, like Neocog-
nitron [5] and HMAX [15,19] filter the image over different stages to reduce the
complexity of the filter operations. These systems are purely forward driven and
do not consider the concept of attention.

Object recognition combined with attention can solve the dilemma of parallel
segmentation and localization. We will first explain the concept of attention and
how it solves this problem. We use a stereoscopic edge and depth detection
model to achieve stereo object recognition. The object detectors are learned
unsupervised and use a neuro-computational model which capture the basic
principles of primate 3D perception. We will first focus on position invariant
recognition and then demonstrate the ability to discriminate different objects.
The model and the results are compared to neuro-computational findings.

1.1 Concept of Attention

Early concepts of visual attention define attention as to focus processing on a
spatially determined part of the image, namely the spotlight of attention. The
location of interest is typically determined from conspicuous or salient image
features forming the saliency map [8,10].
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Fig. 1. The stimuli consist of 10 different 3D objects.

Recently, the “spotlight of attention” concept has been expanded to a feature-
based approach [6] in which attention emerges from interactions between differ-
ent brain areas. High level areas hold a template to specify the searched object
and this information is propagated backwards to lower level areas. The parallel
computation modifies the conspicuity of each descriptor in the system in such a
way that the value represents the accumulated evidence. We implement the con-
cept of attention as a modulating of the feed forward signals (called gain-control)
dependent on the feed back from higher cortical areas. To perceive an object,
a combination of several distributed visual features is required. Such binding
processes can be well described by concepts of visual attention, illustrated by
two continuous sub processes. The first one operates in parallel over all features
and increases the conspicuity of those that are relevant for the searched object,
independent of their location in the visual scene. The other subprocess is linked
to action plans, e.g. eye movement plans, and combines those fragments which
are consistent with the action plan, typically by their spatial location in the
visual scene.

Object Selection and Segmentation For recognizing a searched object in a
scene, the object must first be located and segmented, which however is only
possible if the object has been recognized as such. Attention can solve this
“Chicken-egg-problem” due to its parallel computation approach.|6]

2 Object Recognition System

2.1 Neuronal network architecture

We extend the concept of a population-based object representations [6] by learn-
able object representation based on local edge detectors. This allows to detect
objects depending on their shape or texture. Additionally, we demonstrate the
approach on stereoscopic images.

In our neuronal model (Fig. 2), we do not consider all the complexity of the
visual stream. Rather we simulate an earlier area (V1) and a high level area
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Fig. 2. Neuronal network of the stereoscopic object recognition model. The i and j
indices correspondent to the spatial x and y axis of the images. The index k refers to
different Gabor responses and 1 to different learned features in HVA.

(HVA) whose object selective cells can be mapped to area V2/V4/IT. As input
stimuli we use the left and right eye view of 10 different 3D objects (Fig. 1),
produced by a raytracer engine [1]. The objects are to some degree similar in
their edges and thus the difficulty of the problem is comparable to cluttered
scenes. The first area detects stereoscopic edges and disparities via an energy
model (see [11,13, 14]) and is comparable to area V1. This particular filter bank
[17] uses 56 Gabors with 8 orientations (with a T step size) and 7 different
phase disparity shifts (with 7 step size). This area builds a representation of
the scene encoding edge informations, independent of the right or left view and
therefore enables stereo object recognition. Overlapping receptive fields serve as
input for the object selective cells of the HVA. We achieve the object selectivity
by learning the feed forward weights (V1— HVA) with a biological motivated
learning algorithm and a trace rule (see 2.3). The attention signal stores the
features relevant for the current task. The Frontal Eye Field (FEF) consists of
two areas, the saliency map (called FEFvisual) and the target of the next eye
movement (called FEFmovement). One of the binding processes operates over all
locations in HVA and reinforces the features of the searched object. The other is
achieved by the loop over FEFvisual and FEFmovement and reinforces adjacent
locations. Both processes use competition to decrease the activity of irrelevant
features and location in HVA.
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2.2 Neuron model

We use a rate coded neuron model which describes the firing rate r of a cell as
its average spike frequency. Every cell represents a certain feature (V1: k, HVA:
1) at a certain location (4, ). In the following we will omit the location indices
for clarity. Consider one location in HVA, each cell in HVA gains excitation (as
a weighted sum) from cells of V1 within the receptive field (here a 14x14 patch)
and each cell is inhibited by all other HVA cells via Anti-Hebbian inhibition
(similar as in [23]).

0 aput . 1+
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f(x) gives the non-linear processing. 7x is the time constant of the cells. The
connection wy,; denotes the strength of the feed forward weight from input cell
k to the output cell /. Lateral inhibition is given by the connection weight c; ;s
and can differ across the cells due to the Anti-Hebbian learning.

2.3 Learning of the object descriptors

Changes in the connection strength between neurons in response to appropriate
stimulation are thought to be the physiological basis for learning and memory
formation [21]. In the visual system the connections between neurons (synapses)
are modified according to a simple principle of joint firing, the Hebbian law [7].
According to this law synapses are strengthened if the corresponding cells are
activated at the same time. Thus, over time cells “learn” to respond to and in
connection with specific other cells. In our model object recognition is achieved
by learning the connection weights (w);™*) between V1 and HVA. Using a
general learning algorithm, that has been shown to capture the features of early
visual learning [23], cells from HVA tune themselves to specific features from the
set of presented stimuli.

It has been hypothesized that the ventral pathway uses temporal continuity
for the development of view-invariant representations of objects ([4, 16,22]). This
temporal continuity can be applied using a trace learning rule. The idea is that
on the short time scale of stimuli presentation, the visual input is more likely to
originate from different views of the same object, rather than from a different
object. To combine stimuli that are presented in succession to one another,
activation of a pre-synaptic cell is combined with the post-synaptic activation of
the previous stimulus using the Hebbian principle. We simulate an appropriate
input presentation protocol and the responses of successive stimuli are combined
together to achieve a more invariant representation of an object.

During learning the connection weights wy ;""" are changed over time ac-
cording the Hebbian principle:
ow
. 8tkl _ [T;{VA _ ,,:HVA]+ ((,',,;Cll _ 7;v1) — g [,rlHVA _ 7;HVA]+ wkl) (2)
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7 is the mean of the activation over the particular features (e. 9.7 =% Zl]il rl)

and [z]T = max{z,0}. a,, constrains the weights analogous to the Oja learn-
ing rule [12] and 77, is the time constant for learning. The V1-HVA weights are
learned only at a single receptive field (a 14x14 patch of V1) and their val-
ues are shared with all other locations in the HVA (weight sharing approach).
The learning was performed on small images containing a single stimulus before
processing entire scenes (offline-learning).

Lateral connections between cells were learned by Anti-Hebbian learning.
The name Anti-Hebbian implies that this strategy is the opposite of the Hebbian
learning rule. Similar to the learning of the synaptic connection weights, where
the connection between two cells is increased when both fire simultaneously,
in the Anti-Hebbian case the inhibition between two cells is strengthened. The
more frequent two cells are activated at the same time, the stronger they inhibit
each other, increasing the competition among those two cells (I and !'):

Ocy v
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e =Ty T T Qe G (3)
where 7¢ is the learning rate of the Anti-Hebbian weights. Anti-Hebbian learning
leads to decorrelated responses and a sparse code of the cell population [3].

3 Results

We show the ability of object recognition independent of its position within
a scene containing also a distractor object. We measure the performance to
recognize all objects with a discriminating value.

3.1 Object recognition independent of its position

An object must be recognized independent of its position in the image, its rota-
tion or its relative size (for an overview see [19]). Position invariance is achieved
in the cortex by pooling over a certain spatial area, which is also part of our
model.

‘We now show an object location experiment:

1. We present an object alone in a scene without an attention signal (Fig. 3(a)).
The model selects the most conspicuous region (the object) and binds the
HVA activation to the working memory (which stores in our example the
attention signal).

2. We present a black screen to deplete all cell activities in the system.

3. We test the ability to select the target object. We present a cluttered scene
(Fig. 3(b)) (here for simplicity with only 10 features and 2 objects). The
attention signal encodes the features of the object and reinforces them in
HVA. By this, the system is able to locate the object again (spatial invariant
recognition).
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Fig. 3. The figure shows the layer activities during the object location experiment.
Here the stereoscopic stimuli, the responses of the feature code (with 10 features) in
HVA, the attention signal (features on the y-axis) and both FEF areas are shown.
Normally, the x and y axis correspondent to the spatial x and y axis of the images.
a) The system memorizes the target object, the ’tetrahedron’; and stores the HVA
response as an attention signal for b). b) The attention signal reinforces the features
which represent the ’tetrahedron’ and the system detects the target object.

3.2 Object discrimination

To determine the similarity of two feature codes (r,s) the angle between those
two vectors is considered. The lower the value of drp € [0;1] is the more the
two vectors show similar cell distributions.

dro (r,8) = 1 — |<:| |SS>| with: dim (r) = dim (s) (4)

Our results show that regardless of the number of different objects and inde-
pendently of the number of cells (as long as there is at least one cell per object)
the model is capable to learn and discriminate all objects. It can be seen that
each object is learned by several cells (Fig. 4(a)) and thus an object is char-
acterized by a specific distributed feature code with nearly no overlap to other
objects.

An analysis of whether the model is able to discriminate among the objects
is shown in Figure 4(b) using the discrimination value (drps). Low values (in-
dicated by darker areas) give clue to similar feature codes which would indicate
that discrimination between those two objects is impaired. The results show
that all objects are very dissimilar in their features and thus are very easy to
discriminate. Only object 1 and object 7 show slightly overlapping population
codes (drpr = 0.68) but the objects can easily be discriminated (compare Figure
4(a)). Although some cells tend to code more than one object the results show
that all objects can be discriminated perfectly due to the specific distributed
code.
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Fig. 4. a) For each object (x-axis) the average firing response (0 dark, 1 bright) of each
feature/cell (50 features on the y-axis) is plotted. The average firing response is calcu-
lated over all input stimuli that contain the same object. b) Using the discrimination
value dras, the similarity of the average response (Fig. 4(a)) to an object is shown here
(bright = dissimilar).

4 Discussion

To summarize, attention driven object recognition can solve the problem of selec-
tion and segmentation. We had successfully combined stereo vision with object
recognition which requires to merge the two views of a scene. We have con-
structed a merged representation of the scene in low (V1) and high levels areas
(HVA). Compared with the perspective of computer vision, this can be seen as
a hybrid solution of two contrary approaches. One of them is to construct a
merged high level scene model from both images [2], the other one is to combine
both images at the level of pixels (resulting in the correspondence problem [18]),
which leads to a large number of local false matches.

Our learning algorithm captures the basics of human perception, but can
extend to cover complex cell dynamics like calcium traces [20]. We have shown
that our system models invariances of the visual cortex. We have focused on
spatial invariance and therefore we will have to extend the model and its learning
algorithm to scale and rotation invariance. Most neurons in higher areas have a
small rotation and scale invariance, but encode a single view to the object (called
view-tuned cells [9]). In further investigations we can compare the properties of
the learned cells in the HVA with the view-tuned cells.
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